Terpene accumulation in muscle and fatty tissues of calves supplemented with essential oils

E. Serrano¹, A. Cornu^{1,2,4}, N. Kondjoyan², G. Figueredo³, J. Agabriel¹ and D. Micol¹

¹Unité de Recherches sur les Herbivores, INRA Theix, F63122 Saint-Genès Champanelle, France ²Unité Qualité des Produits Animaux, INRA Theix, F63122 Saint-Genès Champanelle, France ³Laboratoire de Chimie des Huiles Essentielles, Université Blaise Pascal Les Cézeaux, F63177 Aubière, France

(Received 4 May 2006; revised version 22 January 2007; accepted 2 May 2007)

ABSTRACT

Plant secondary metabolites such as terpenes, deposited in the fat of pasture-fed animals have been proposed as biomarkers in these animals. In this study, the accumulation of a variety of terpenes in muscle and adipose tissues was investigated in young bovines. Two calves were fed with artificial milk and two calves were administered the same artificial milk with a mixture of essential oils. Terpenes were analysed by gas chromatography-mass spectrometry in *rectus abdominis* intramuscular lipid, subcutaneous, intermuscular, perirenal and peritoneal adipose tissues. The enrichments obtained were weak. Terpenes appeared to preferably accumulate in perirenal and peritoneal fat. Sesquiterpenes were retained more than monoterpenes or their oxygenated derivatives in the tissues of the calves receiving essential oils. Tissue enrichment in the calves that had not ingested the essential oil was observed for a few terpenes, suggesting that lung absorption may also be an effective way of penetration.

KEY WORDS: calves, meat, biomarkers, grass feeding, terpenes, oils

INTRODUCTION

There is increasing consumer interest in animal products from "green" production systems. Since consumers often associate grass feeding with this category of

⁴ Corresponding author: e-mail: agnes.cornu@clermont.inra.fr

animal products, efforts have been made in recent years to enable direct tracing of grass feeding in herbivore products. Plant secondary metabolites such as terpenes have been proposed as biomarkers of pasture feeding in animal products (Martin et al., 2005; Prache et al., 2005). Terpenes are found in high amounts and wide molecular diversity in certain *Apiaceae*, *Lamiaceae* and *Asteraceae* found in permanent grasslands. In contrast, *Poaceae*, which are found in cultivated grasslands, only contain a few of the common terpenes, and in low amounts. A significant research effort has been directed towards tracing the cow's diet using terpene profiles in milk (Viallon et al., 2000; Fernandez et al., 2003) and in cheese (Favaro et al., 2005). Although terpenes have long been investigated in meat flavour studies (Larick et al., 1987; Young et al., 1997) examples of diet discrimination using terpene profiles are scarce (Cornu et al., 2001a; Priolo et al., 2004).

Several authors have suggested that, in general, terpene accumulation in tissues is very weak but that their metabolism pattern depends on their chemical structure, monoterpenes being more extensively eliminated than sesquiterpenes. Nevertheless all this information has been provided by pharmacological studies in non-ruminant species (Kohlert et al., 2000), by studies on terpene elimination in milk (Viallon et al., 2000; Fernandez et al., 2003), or by studies in which terpene ingestion was not controlled (Cornu et al., 2001a,b; Priolo et al., 2004). Specific difficulties hinder the study of terpene fingerprints in ruminant meat products. First, the ruminant digestive tract, which initially functions as in monogastrics, undergoes considerable changes at weaning when the rumen comes into operation. Also, the animals follow different production systems associated with slaughter ages, varying from a few months to several years. Hence, diet changes generally occur at different stages (milk, growth, finishing), which are all likely to leave a mark and contribute to the terpene fingerprints of the tissues. So further information on terpene behaviour and dynamics in the tissues of ruminant species, including chemical structure of the tracers to be used, absorption/storage/elimination pathways, influence of the animal's characteristics (breed, sex, age, physiological stage) and influence of the tissue analysed, is required.

The aim of this study was to evaluate the potential of the essential oil-enrichment strategy to investigate terpene fingerprinting in muscle and adipose tissues of young bovines. The accumulation of a variety of monoterpenes, oxygen-containing monoterpene derivatives and sesquiterpenes in perirenal, subcutaneous and peritoneal fat and in *rectus abdominis* muscle was tested in controlled conditions.

MATERIAL AND METHODS

This trial was conducted on the INRA experimental farm at Marcenat (Cantal, France).

Four male Montbeliard calves aged 52 ± 5.1 days were fed with natural cow's milk for their first month of life. From the second month, the calves were fed with commercial milk replacer (Univor Energie®, Bongrain, France) supplemented (EO group: essential oil) or not (C: control group) with essential oils.

Essential oils kindly supplied by Pr. Lamaison and Pr. Carnat (Clermont-Ferrand Faculty of Pharmacy, Clermont-Ferrand) were mixed in the following volume proportions, by, %: *Achillea millefolium* 27.5, *Meum athamanticum* 7.5, *Pinus sylvestris* 25.0, *Vetiver zizanoides* 35.0 and cinnamon oils 5. The essential oil preparation was homogenized in commercial UHT cow's milk by gentle stirring in a water bath at 40°C. Individual doses containing 5 and 20 µl oil per 10 ml milk were stored at -20°C.

The calves were fed from buckets twice a day with reconstituted milk in amounts increasing from 5.5 to 8 l/calf/day during the four-month experiment. The essential oil doses were mixed with the commercial milk replacer reconstituted at 38-40°C just before administration. During the first week of the experiment, the EO calves received one dose of 5 μ l of essential oils at every meal (i.e. 10 μ l per day). During the second, third and fourth weeks, they received two, three and four 5 μ l doses, respectively, at each meal (i.e. from 20 to 40 μ l per day). From week 5 to slaughter they received one dose of 20 μ l at every meal (40 μ l per day). Cumulative samples of 50 ml control and essential oil milks taken twice a day from both offered and refused milks were stored at -20°C.

Slaughter took place when the animals reached about 250 kg liveweight. The heaviest animal in each pair was slaughtered first, and the others 14 days later.

Samples of approximately 20 g fat taken at slaughter from the subcutaneous, peritoneal and perirenal adipose tissues, and 100 g *rectus abdominis* muscle were wrapped in aluminium foil, sealed in polyethylene bags with a vacuum packaging machine (Multivac, F77462 Lagny sur Marne), and stored at -20°C until analysis.

Analyses

Lipid extraction. Muscle lipid was recovered as a supernatant after centrifuging about 80 g of roughly cut muscle at 75600 g for 2 h at 25°C in a Beckman Avanti J-301 centrifuge (Fullertown, CA 92834-3100, USA). Milk was defrosed at room temperature (20°C) before the lipid was extracted by centrifuging about 88 ml of milk, as described above.

Analysis of volatile compounds. Aliquots of 0.2 g extracted lipid or subsamples of 0.15 g adipose tissue taken from within each sample were deposited while frozen on 0.2 or 0.15 g glass wool in 40 ml cylindrical glass extractors. Volatile compounds were extracted by dynamic headspace (DHS) and analysed by gas chromatography-mass spectrometry as previously described by Priolo et al.

(2004) with a helium purge flow of 80 ml/min and a trap desorb temperature of 220° C. Peak integrations were performed on the m/z 93 chromatogram for monoterpenoids and the m/z 161 chromatogram for sesquiterpenes, and are expressed as arbitrary area units.

Animal and tissue comparisons. Ranking of monoterpene (n=14), oxygenated monoterpene (n=5) and sesquiterpene (n=18) areas were compared. Comparisons were performed using the Wilcoxon non-parametric rank test of the SAS software package (SAS, 1989). First, comparisons were performed on control vs essential oil animals separately for each tissue for monoterpenes, oxygenated monoterpenes and for sesquiterpenes, and second, two-by-two tissue comparisons were performed separately for each pair of calves for monoterpenoids and for sesquiterpenes.

RESULTS

Feed and essential oil intake, calf growth performance and slaughter results are reported in Table 1. Both EO calves had a higher liveweight gain than the controls, but not necessarily a higher milk intake.

	Cont	rol	Essenti	al oil
	C1	C2	EO1	EO2
Reconstituted total milk intake, l	1620	1787	1711	1948
Essential oil total intake, µl	0	0	4435	5012
Time in experimental diets, days	115	129	115	129
Slaughter age, days	164	187	170	178
Liveweight, kg				
initial	97	103	104	103
final	260	260	273	296
Average daily liveweight gain, kg	1.39	1.22	1.44	1.49
Final empty body weight, kg	240	238	261	278
Carcass weight, kg	148	139	157	167
Internal fat ¹ , kg	6.59	9.68	9.84	10.70
Internal fat/final empty body weight, %	2.74	4.06	3.76	3.85
Digestive tract weight/liveweight, %	9.6	10.1	11.0	8.0

Table 1. Calves' feed intake, growth performance and slaughter measurements

¹ sum of perirenal, peritoneal, mesenteric and pericardiac fat weights

The major terpenoid compounds found in the milk samples are given in Table 2. Fourteen monoterpenes, 2 oxygen-containing monoterpenes and 6 sesquiterpenes were found in the control milk while found to be enriched by one (junipene) to 63 times (δ -3-carene) in the EO milk. Three additional monoterpenes, five oxygen-containing monoterpenes and 23 sesquiterpenes were found in high

	LRI ²	Essential oil milk	Control milk
Monoterpenes			
santolina triene	908	7 480	200
tricyclene	931	33 560	1 397
α-thujene	933	39 118	
α-pinene	944	806 814	482 496
camphene	959	107 442	9 650
sabinene	982	494 257	
β-pinene	989	610 570	241 889
β-myrcene	993	243 206	44 659
α-phellandrene	1013	92 410	2 887
δ-3-carene	1020	195 116	3 092
α-terpinene	1025	19 728	1 221
<i>p</i> -cymene	1032	6 045	438
limonene	1039	200 562	43 896
β -phellandrene (+1,8-cineole in EO)	1041	157 473	34 097
trans-β-ocimene	1051	169 474	
γ-terpinene	1067	118 594	2 856
terpinolene	1098	61 006	13 228
Monoterpene derivatives			
(1,8-cineole)	1041	+	
linalool	11041	12 910	
camphor	1163	7 801	
lavandulol	1103	13 939	
terpinen-4-ol	11/2	18 098	3 199
	1192		12 802
α-terpineol	1204	28 403	12 802
trans-sabinene hydrate acetate	1258	3 260	
(+cuminal in EO)	1202	12 000	
bornyl acetate	1302	12 098	
Sesquiterpenes			
α-cubebene	1371	4 646	
α-ylangene	1398	8 711	782
α-copaene	1403	19 143	3 669
α -funebrene+ β -bourbonene	1415	11 351	
unidentified sesquiterpene	1431	3 364	
junipene	1447	20 543	21 707
β-ylangene	1451	8 034	
trans-β-caryophyllene	1455	33 353	7 220
β-copaene	1462	34 796	
trans- β -farnesene + unidentified	1472	18 348	
trans-muurol-3,5-diene	1482	4 340	
α-humulene	1489	16 145	1806
α-acoradiene	1498	27 719	
vetispene + γ -muurolene	1504	25 291	2 658
α-amorphene	1508	32 446	
germacrene D	1516	95 944	
δ-selinene	1520	15 824	

Table 2. Terpenes and derivatives desorbed from reconstituted milk¹

continued on the next page

172

	LRI ²	Essential oil milk	Control milk
β -vetispene + α -muurolene	1524	13 299	
γ-cadinene	1547	25 311	
δ-cadinene	1551	47 990	
γ-vetivene	1558	10 152	
trans-cadina-1(2),4-diene	1560	10 276	
α-cadinene	1569	3 408	
unidentified + α -calacorene	1574	5 646	
unidentified sesquiterpene	1581	3 271	

Table 2. continued

¹ arbitrary area units of the m/z=93 ion peaks for monoterpenes and derivatives and m/z= 161 peaks for sesquiterpenes

² linear retention indices

quantities in EO milk. Although it had a strong odour, this milk was well accepted by the calves.

Total monoterpenes, oxygen-containing derivatives and sesquiterpenes desorbed from the muscle lipid and from the four fatty tissues are presented in Figure 1. Monoterpenes and sesquiterpenes were more abundant in both EO than in the two C calves only for intermuscular, peritoneal and perirenal fatty tissues.

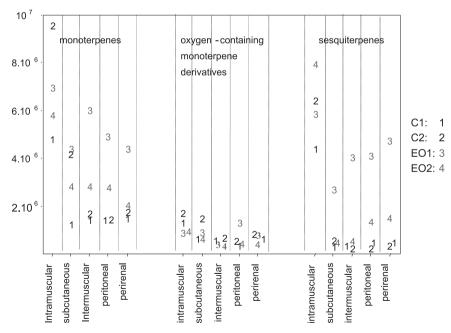


Figure 1. Monoterpenes, oxygen-containing derivatives and sesquiterpenes desorbed from intramuscular fat and from fatty tissues of the control (C1 and C2) and essential oil (EO1 and EO2) calves, expressed in arbitrary area units

Tables 3 to 5 report the individual monoterpenes, oxygen-containing derivatives and sesquiterpenes detected in the fatty tissues and muscle lipids, together with the probabilities obtained from the rank tests. Terpenes with higher areas in the two EO than in the C animals are typed in bold.

Some of the terpenes found in the milk were not recovered in the adipose tissues: santolinatriene, tricyclene, α -phellandrene, γ -terpinene, camphor, lavandulol, terpinen-4-ol, S1431, junipene, β -ylangene, α -acoradiene, β -vetispene + α -muurolene, S1574 + α -calacorene, S1581. In contrast, some terpenes were detected in the C animals while they had not been found in the C milk.

Few monoterpenes and derivatives were found with higher areas in the two EO than in the two C animals. Peritoneal and intermuscular fatty tissues presented the highest scores (10 and 7 out of 17, respectively). The comparison of monoterpenoid contents, taking into account all individual areas, revealed no significant difference between the EO and C animals. Two-by-two comparisons of the fatty tissues did not reveal any significant difference in terms of monoterpenoid contents.

As shown in Table 5, relatively high scores were found for sesquiterpenes with higher areas in both EO animals: 16, 14, 9, 7 and 7 out of 19 in perirenal, peritoneal, intermuscular, subcutaneous and intramuscular samples, respectively. Comparison of sesquiterpene contents taking into account all individual areas (Table 5, 1^{st} comparison) showed that sesquiterpene contents were clearly higher in EO than C animals in all samples (P<0.0001 for intermuscular, peritoneal and perirenal fats and 0.003 for subcutaneous fat) except intramuscular lipid (P=0.35). In the EO animals, sesquiterpene contents (Table 5, 2^{nd} comparison) were higher in peritoneal (P=0.0124) and perirenal (P=0.0021) fat than in subcutaneous fat, and tended to be higher in perirenal than in intermuscular fat (P=0.0603).

Although 6 sesquiterpenes were found at higher levels in the two EO than in the two C intramuscular lipid samples, the corresponding ratios did not exceed 2.4 (γ -cadinene). Not even one terpene was found to occur specifically in the EO muscle lipid. For many terpenes, these low values were attributable to their relatively high occurrence in the C animals. In fact, terpenes were higher in muscle lipid than in all fatty tissues, which only reflected the structural differences between samples. Whereas muscle lipids obtained by centrifugation formed a homogeneous oily phase, adipose tissues were solid, heterogeneous samples with varying proportions of connective tissue. Since volatile compound recovery by dynamic headspace (DHS) depends on the physicochemical properties of the matrix from which they have to be extracted, only structurally similar samples may be compared.

Compounds Intramuscular Subcutaneous Intermuscular Perritoneal Perritoneal	Table 3. Monoterpenes eviden	evi	dencec	ICEU III CALVES TAL	V C3 16																
3O2 CI C2 EOI 20 10 23 48 1 49 44 21 88 1 49 44 21 88 1 537 174 249 1001 3 537 174 249 1001 3 85 78 91 115 1 161 66 122 192 9 161 66 122 192 9 137 341 486 487 1 337 341 486 487 1 28 0 26 13 13 0 28 0 26 13 13 3 28 0 26 13 3 2 37 341 486 487 1 28 0 22 45 1 35 86 34 38 2 36 34 138.0 38 2	T D Tb Intramuscular	Intramus	itramus	- ro -	cular		Sı	ibcutan	eous		Int	ermusc	cular			Perito	neal			Peri	renal
20 10 23 48 048 554 669 2276 49 44 21 88 514 151 41 160 537 174 249 1001 85 78 91 115 85 78 91 115 86 10 0 0 0 0 0 0 0 26 13 13 337 341 486 487 28 0 26 13 13 28 0 26 34 38 337 341 486 487 35 86 34 38 36 0 22 45	CI C2 E01	C2		ы											CI			EO2	G	C	
048 554 669 2276 49 44 21 88 514 151 41 160 537 174 249 1001 85 78 91 115 85 78 91 115 86 101 66 122 192 161 66 122 192 0 0 0 0 0 1337 341 486 487 335 86 34 38 35 86 34 38 or between tissues	933 88 42	42			56	88	20	12	4	13	0	0	62	52	0	0	38	20	10	23	
49 44 21 88 514 151 41 160 537 174 249 1001 85 78 91 115 86 78 91 115 87 78 91 115 86 12 192 192 10 0 0 0 0 0 26 13 13 33 337 341 486 487 28 0 22 45 28 0 22 45 35 86 34 38 36 34 186 487 10 22 45 487 28 0 22 45 35 86 34 38 36 94 168 188 37 148 148 148 38 138 138 138 38 138 138 138 38 148 148 <td>942 2396 1618 2605</td> <td>6 1618</td> <td></td> <td>20</td> <td></td> <td></td> <td>-</td> <td><u> </u></td> <td>982 1</td> <td>111 7</td> <td>713</td> <td></td> <td>07 1</td> <td>E</td> <td></td> <td>659</td> <td>2328</td> <td>1048</td> <td>554</td> <td>699</td> <td>2276 89</td>	942 2396 1618 2605	6 1618		20			-	<u> </u>	982 1	111 7	713		07 1	E		659	2328	1048	554	699	2276 89
514 151 41 160 537 174 249 1001 85 78 91 115 85 78 91 115 161 66 122 192 0 0 0 0 337 341 486 487 337 341 486 487 335 86 34 38 or between tissues	959 200 125 1	125		-	196	175	0	153	94	09	27	_	147	68	26	34	98	4 9	4	21	88 19
537 174 249 1001 85 78 91 115 161 66 122 192 0 0 0 0 0 337 341 486 487 28 0 22 45 35 86 34 38 or between tissues	981 428 156 1	8 156		-	199		34								271	43	180	514	151	41	160 41
85 78 91 161 66 122 0 0 0 337 341 486 28 0 22 35 86 34 or between tissues 67 22	988 1220 680 10	680 1	-	10	095		47	-			23	_	-		210	195	973	537	174	249	
161 66 122 0 0 0 0 337 341 486 . 28 0 22 . . 35 86 . . . or between tissues 	993 1927 720 9	7 720		6	959	687	40	280	95	106	75	51	95	31	40	43	277	85	78	91	
0 0 0 0 0 26 13 337 341 486 . 28 0 22 35 86 34 or between tissues	1020 976 420 5	6 420		5	520	503	72		_	-	110			213	80	91	204	161	99	122	192 90
0 26 13 337 341 486 . 28 0 22 35 86 34 or between tissues	1025 223 62 8	3 62			88	69	0	59	18	0	0	0	0	0	0	0	0	0	0	0	$0 \ 0$
337 341 486 28 0 22 35 86 34 or between tissues	1032 92 45 (45		~	62	49	14	46	19	0	0	20	11	0	0	0	10	0	26	13	13 0
28 0 22 45 36 33 38 38 or between tissues 38	1038 1991 912 1154	1 912 1	-	11.5	4		81									350	774	337	341	486	487 15
28 0 22 45 35 86 34 38 or between tissues																					
35 86 34 38 or between tissues	1050 300 97 7	76		~	LL	76	23	0	30	42	31	18	49	25	23	15	124	28	0	22	45 13
s. No significant probability was evidenced for differences between C and EO or between tissues	1097 182 93 71	93		71		81	42	146	46	34	99	35	28	32	17	29	67	35	86	34	38 29
	² linear retention indice	r retention indice	tion indice	dice	ŝ	No sigi	nifican	t proba	ubility .	was ev	vidence	ed for (differe	nces t	betwee	en C a	nd EO	or be	tween	tissue	10
	Taure T. OAygour-containing monoterpoine o		חוהו התוה	2	5	A du Vo	C VIGE			0 101											
NURVEIPULE UNIVERSES EVIDENCE IN CALVES TAL	r Brb Intramuscular		Intram	JIIII	ISCI	ılar		Subcu	taneou	s		Interm	ıscular			Perit	oneal			Per	renal
scular Subcutaneous Internuscular Peritoneal Peritenal	LNI CI C2	C1		2	EC		cl Cl	C2	EO1	EO2	Cl	C2	E01	EO2	Cl	C2	E01	EO2	C1	C2	EO1 E
IntermuscularPeritonealC1C2E01E02C1C	1042 222 64	222		2	_	71 7		0 0	13	81	0	0	0	15	0	52	36		24		11
Internuscular Peritoneal Peritonal C1 C2 E01 E02 C1 C2 E01 1 0 0 15 0 52 36 0 24 25 11	1102 199 171	199		5)4 380	125		5 104	82	68	32	75	70	410			152	188
Internuscular Peritoneal Perirenal C1 C2 E01 E02 C1 C2 E01 E02 1 0 0 15 0 52 36 0 24 25 11 5 104 82 68 32 70 410 100 86 152 188	1204 419 574	419		74	3			50 616	226	201	232	278	236	180	128	249			284	407	286
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$																					

curninal + trans-sabinene hydrate acetate 1257 bornyl acetate 1305

¹ arbitrary area units, ² linear retention indices. No significant probability was evidenced for differences between C and EO or between tissues

09 0

ferences between all tissues		
mparison) and differen		
inces between EO and C $(1^{st}$ comparison) and diff		
obabilities for differences bet		
alf fat ^a and the probabilit		
evidenced in calf fat		
Table 5. Sesquiterpenes	(2 nd comparison)	

		I	Intramuscular	scular		S	Subcutaneous	reous		II	Intermuscular	cular		ц	Peritoneal	al			Perirenal	lal	
	LKI"	CI	C2	EO1	 E02	CI	C2 H		E02	CI	C2 E	EO1 E	E02 C1		C2 E01		EO2 C		C2	EO1 H	EO2
α-cubebene	1371	111	99	8	148	15	145	53	12	0	0	287	0	0	19	94	44	21	0	164	75
α -ylangene	1399	131	90	176	203	0	25	51	0	0	0	136	11	0	0	115	197	15	0	137	0
a-copaene	1403	236	151	298	254	0	42	118	0	0	0	193	11	16	0	47	20	15	0	227	71
α -funebrene + β -bourbonene	1415	304	197	255	226	0	129	363	65	0	81	185	58	74	118	133	73	82	139	256	175
β-caryophyllene	1454	387	258	61	343	0	0	159	18	195	0	142	19	27	0	281	56	17	0	359	116
B-copaene	1462	377	338	302	339	109	63	306	54	0	34	446	69	92	59 5	530	85	111	79	464	177
trans- <i>β</i> -farnesene	1471	102	112	0	0	0	0	0	0	0	0	89	0	19	0	121	35	28	0	129	59
unidentified	1482	59	85	57	93	11	19	29	0	0	0	46	12	0	26	72	11	0	10	50	27
α-humulene	1489	128	320	230	254	30	20	55	11	0	0	161	0	0	0	179	91	0	38	201	108
γ-muurolene	1504	184	164	381	243	27	18	193	39	34	0	296	52	60	19	314	105	48	14	334	102
α-amorphene	1508	280	315	460	437	0	б	115	0	0	0	202	0	0	0	227	41	0	0	244	55
germacrene D	1515	370	223	765	316	0	17	285	34	0	0	566	99	0	0	530	132	0	0	624	135
δ-selinene	1520	76	73	147	148	0	0	67	10	0	0	104	0	0	0	110	41	0	0	137	49
y-cadinene	1545	113	169	488	192	35	15	307	87	34	0	386	66	56	19	454	144	47	0	467	131
δ-cadinene	1549	3253	1637	1808	4427	31	35	433	101	40	0	576	104	74	20	671	177	57	25	682	150
γ-vetivene	1557	171	123	129	191	0	0	09	0	0	0	91	0	0	0	62	226	0	0	93	0
<i>trans</i> -cadina-1(2)-4- diene	1560	0	39	122	17	0	640	47	14	0	0	63	18	0	0	56	27	0	0	94	27
		Ч	Intramuscular	scular		Ñ	Subcutaneous	Jeous		II	Intermuscular	cular		ц	Peritoneal	al			Perirenal	ıal	
1st comparison C vs EO			0.3497	Lt			0.0030	30			<0.0001	01		÷	<0.0001				<0.0001	01	
2 nd comparison																					
Tissue 1 vs tissue 2		C		EO		C		ΕO		С		EO		C		ЕО		U		EO	
Subcutaneous		<0.0001	01	<0.000]	101	'		'		'		1		ı		ı		ı		ı	
Intermuscular		<0.000]	01	0.0017	17	0.0039	6	0.2999	6	'		1		ı		ı		ı		ı	
Peritoneal		<0.0001	01	0.0088	88	0.5514	4	0.0124	4	0.0257	L	0.2293	3	ı		ı		ı		ı	
Perirenal		<0.0001	01	0.0586	36	0.5291	1	0.0021	E	0.0224	4	0.0603		0.9631		0.3470	_	ı		'	

TERPENE IN MUSCLE AND FATTY TISSUES OF CALVES

DISCUSSION

The low percentages in digestive tract relative to liveweights indicated a preruminant development stage for all four animals (Sautet, 1995).

Buchin and Salmon (2002) evaluated the total terpene content of milk from $4.6 \cdot 10^{-3}$ ppm in winter with cows fed on hay, up to 0.5 ppm in summer with cows grazing highland pastures. This would correspond to an ingested amount of $8 \cdot 10^{-3}$ g for a calf receiving 15 l milk/day. The daily dose administered in the present experiment was 5-fold higher, in order to obtain stronger markings. In spite of this high dosing, feeding essential oils to the calves did not produce a drastic enrichment in their tissues, at least in terms of total terpenes. The excess terpene may have failed to be absorbed through the digestive tract, or may have been readily eliminated. This low accumulation is consistent with the high clearance values observed by Kohlert et al. (2000), who determined the average half-life of a variety of monoterpenes and oxygen-containing derivatives to be about one hour.

A variety of terpenes were found in the adipose tissues of the C animals, some of which were not found in the corresponding milk: sabinene, linalool, trans-sabinene hydrate acetate, β -copaene and β -bourbonene. Since the C and EO animals were housed in the same room, these molecules may have been introduced from the air by absorption into the lungs (Shipe et al., 1962).

Terpene amounts found in a given tissue from the two C animals were generally very similar, whereas terpene amounts found in a given tissue from the two EO animals differed up to 18-fold (α -copaene in intermuscular fat). On larger scales, high variation ranges of terpene contents were systematically observed when tracing grass feeding, vs low terpene diets in animal products (Cornu et al., 2002; Priolo et al., 2004). However, as shown in Figure 1, the relative position of the two EO animals was always the same, with the terpene content being higher in EO1 than in EO2. Interestingly, the total terpene dose ingested was lower for EO1 than for EO2 (Table 1). Individual variations between animals must therefore have other explanations than just the amount ingested.

The different terpene molecules behaved differently with regard to tissue accumulation. Globally, the terpenes accumulated the least were oxygen-containing monoterpene derivatives and the most, sesquiterpenes. Even at high enrichment levels in milk, monoterpene accumulation was low. This could be explained by lower absorption in the digestive tract and higher elimination of monoterpenoids from the animal's organism. Considering secretion in milk as a route of terpene elimination, these observations are consistent with the results obtained by Viallon et al. (2000) who found that monoterpene content in milk increased more rapidly than sesquiterpene content after feeding a terpene-rich diet. Besides, a number of studies on ovine fat (Priolo et al., 2004), on bovine fat and meat (Cornu et al., 2001b) and on dairy products (Fernandez et al., 2003) acknowledged sesquiterpenes as having a higher discriminating power than monoterpenes. According to Vernon (1986), fatty tissues mainly develop during the postnatal phase due to adipocyte hypertrophy, with the most precocious fatty tissue developing in perirenal tissue, followed by omental (including peritoneal), intermuscular and, lastly, subcutaneous tissue. Considering that terpenes would arrive in fatty tissues with the fatty acids, these differences in precocity of fatty tissue development could explain the between-tissue differences observed in the relatively young animals studied here. These between-tissue differences in terpene accumulation could imply differences in utility of the different tissues for tracing grass feeding. Along these lines, Priolo et al. (2004) have already hypothesized that differences in skatole concentrations in different trials. In other studies, Priolo et al. (2002) and Serrano et al. (2006) found perirenal fat to be much more reliable than subcutaneous fat for discriminating grass feeding in young lambs and calves, respectively, using carotenoid absorption measurements.

CONCLUSIONS

Essential information emerges from these results concerning tissue marking by terpenes in young animals, which should be taken into account before considering studies on a larger scale. First, relatively high doses of essential oil are well accepted by calves. Even after a three-month treatment, this massive supply of terpenes did not induce very drastic enrichments in tissues, as observed in experiments where terpene-rich diets fed to cows led to terpene-rich milk. This suggests that elimination processes prevent terpenes from accumulating in the tissues in excessive amounts. At equivalent milk enrichment ratios, more occurrences of tissue marking were obtained for sesquiterpenes than for monoterpenes or their derivatives, making them better suited to differentiate animals based on their diet, as previously reported by other authors. Due to the extraction procedure, intramuscular lipid had a higher terpene concentration than adipose tissues, but was the medium least suited to differentiate C from EO animals. Finally, perirenal and peritoneal fat proved to be the most reactive tissues toward the increase in dietary terpenes. These preliminary results will provide a basis on which to design future experiments on terpene absorption, metabolism and storage/accumulation. Concerning traceability, it is most probable that only strongly contrasted feeding systems could be distinguished by using the terpene fingerprint in meat products.

ACKNOWLEDGEMENTS

The authors wish to thank Ph. Pradel and INRA-Marcenat staff and the team of the experimental slaughterhouse in Theix.

REFERENCES

- Buchin S., Salmon J.C., 2002. Estimation of the quantity of terpenes present in different types of milk. In: Proceedings of the 26th IDF World Dairy Congress. Paris, pp. 24-27
- Cornu A., Kondjoyan N., Begnaud F., Micol D., Renou J.P., Berdagué J.L., 2001a. Terpenes in meat: tracers of animal feed and geographical origin. In: VIII^{èmes} Rencontres Recherches Ruminants. Paris, p. 61
- Cornu A., Kondjoyan N., Frencia J.P., Berdagué J.L., 2001b. Tracer l'alimentation des bovins. Déchiffrer le message des composés volatils des tissus adipeux. Viandes Prod. Carnés 22, 35-38
- Cornu A., Kondjoyan N., Martin B., Ferlay A., Pradel P., Coulon J.B., Berdagué J.L., 2002. Toward the recognition of the main diets distributed to cows by means of terpene profiles in milk. In: IX^{èmes} Rencontres Recherches Ruminants. Paris, p. 370
- Favaro G., Magno F., Boaretto A., Bailoni L., Mantovani R., 2005, Traceability of Asiago mountain cheese: a rapid, low-cost analytical procedure for its identification based on solid-phase microextraction. J. Dairy Sci. 88, 3426-3434
- Fernandez C., Astier C., Rock E., Coulon J.B., Berdagué, J.L., 2003. Characterisation of milk by analysis of its terpene fraction. Int. J. Food Sci. Technol. 38, 445-451
- Kohlert C., van Rensen I., März R., Schindler G., Graefe E.U., Veit M., 2000. Bioavailability and pharmacokinetics of natural volatile terpenes in animals and humans. Planta Med. 66, 495-505
- Larick D.K., Hedrick H.B., Bailey M.E., Williams J.E., Hancock D.L., Garner G.B., Morrow R.E., 1987. Flavor constituents of beef as influenced by forage and grain feeding. J. Food Sci. 52, 245-251
- Martin B., Cornu A., Kondjoyan N., Ferlay A., Verdier-Metz I., Pradel P., Rock E., Chilliard Y., Coulon J.B., Berdagué J.L., 2005. Milk indicators for recognizing the types of forages eaten by dairy cows. In: J.F. Hocquette, S. Gigli (Editors). Indicators of Milk and Beef Quality. EAAP Publication No. 112, Wageningen, pp. 127-136
- Prache S., Cornu A., Berdagué J.L., Priolo A., 2005. Traceability of animal feeding diet in the meat and milk of small ruminants. Small Ruminant Res. 59, 157-168
- Priolo A., Cornu A., Prache S., Krogmann M., Kondjoyan N., Micol D., Berdagué J.L., 2004. Fat volatiles tracers of grass feeding in sheep. Meat Sci. 66, 475-481
- Priolo A., Prache S., Micol D., Agabriel J., 2002. Reflectance spectrum of adipose tissue to trace grass feeding in sheep: Influence of measurement site and shrinkage time after slaughter. J. Anim. Sci. 80, 886-891
- SAS/STAT[®], 1989. User's Guide Int., Version 6. 4th Edition. Statistical Analysis Systems Institute Inc., Cary, NC
- Sautet J., 1995. L'appareil digestif et ses adaptations. In: R. Jarrige, Y. Ruckebusch, C. Demarquilly, M.H. Farce, M. Journet (Editors). Nutrition des Ruminants Domestiques. INRA Editions. Paris, pp. 183-222
- Serrano E., Prache S, Chauveau-Duriot B., Agabriel J., Micol D., 2006. Traceability of grass-feeding in young beef using carotenoid pigments in plasma and adipose tissue. Anim. Sci. 82, 909-918
- Shipe W.F., Ledford R.A., Peterson R.D., Scanlan R.A., Geerken H.F., Dougherty R.W., Morgan M.E., 1962. Physiological mechanism involved in transmitting flavour and odors to milk. II. Transmission of some flavour components of silage. J. Dairy Sci. 45, 477-480
- Vernon R.G., 1986. The growth and metabolism of adipocytes. In: P.J. Buttery, N.B. Haynes, D.B. Lindsay (Editors). Control and Manipulation of Animal Growth. Butterworths, London, pp. 67-83
- Viallon C., Martin B., Verdier-Metz I., Pradel P., Garel J.P., Coulon J.B., Berdagué J.L., 2000. Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait 80, 635-641
- Young O.A., Berdagué J.L., Viallon C., Rousset-Akrim S., Theriez M., 1997. Fat-borne volatile and sheep meat odour. Meat Sci. 59, 183-200